Skip to main content

June 2019 ENSO Blog Update: Concentrate and ask again

Our El Niño is still hanging around, and forecasters think it’s likely to stay through the summer. What happens after that is less clear, though, with about a 50% chance of El Niño continuing through the fall and winter.

Things as they are

The sea surface temperature across much of the tropical Pacific is still warmer than average, with the Niño3.4 Index coming in at 0.64°C above average during May (via ERSSTv5).

Sea surface temperature anomalies, May 2019

May 2019 sea surface temperature departure from the 1981-2010 average. Graphic by climate.gov; data from NOAA’s Environmental Visualization Lab.

The atmosphere also reflected weak El Niño during May, and both the Southern Oscillation Index the Equatorial Southern Oscillation Index were moderately negative. When these indexes are negative, it means the surface air pressure over the far western Pacific is higher than average (more sinking air) and the surface air pressure over the central-eastern Pacific is lower than average (more rising air), indicative of a weakened Walker circulation.

Things that were

Speaking of the Niño3.4 index—it’s been just bumping along between 0.5° and 1°C above average for several months in a row. This behavior is fairly unusual.

Monthly sea surface temperature Nino 3.4 Index Values

Monthly sea surface temperature in the Niño 3.4 region of the tropical Pacific for 2018–19 (purple line) and all other El Niño years since 1950. Climate.gov graph based on ERSSTv5 temperature data.

Of the 23 El Niño winters in our historical record (dating back to 1950), nine persisted into March–May. Six of those were stronger El Niños, with the three-month-average Niño3.4 Index (the “Oceanic Niño Index” or ONI) peaking at 1.5°C or more above average.

Two winters, 1968–69 and 1986–87, featured a peak ONI of 1.1°C and 1.2°C (respectively) and persisted into the spring. Only once before now has the ONI remained above 0.5°C but less than 1°C above average throughout the winter and lasted into the spring: 2014–15. In that instance, March 2015 was technically the start of the great El Niño of 2015-16.    

These three cases were all followed by El Niño the next winter. The predictive value of this factoid is not large, though, and I’m really just providing you fodder for your next very esoteric trivia night. You can revisit Tony’s excellent post from 2014 for an explanation of why past is not prologue, but essentially, the ocean/atmosphere system is so complex that from year to year, even if some elements (like the ONI) look the same, there are many, many other differences. These differences mean that conditions will develop differently, leading to unique futures. My favorite part of Tony’s post is that it would take approximately one trillion quintillion years for nature to repeat itself!

Hints of what’s to come

So what has more predictive power? To develop the most complete picture of how conditions in the tropical Pacific might develop over the next several months, ENSO forecasters study current conditions and dynamical and statistical computer models. (From the grimaces I sometimes see after forecasters consider the latest model runs, I suspect some of us consult soothsayers, as well…)

Near-term, one of the conditions we look at is how the winds near the surface of the tropical Pacific—the trade winds—are behaving. The trade winds normally blow steadily east-to-west, keeping warm water piled up near Indonesia. When they slow down, that warm water can begin to slide eastward under the surface—a downwelling Kelvin wave—transferring warmer waters to the east. This warm wave eventually rises to the surface, reinforcing the El Niño.

Throughout most of May, the trade winds were weaker than average.

Near-surface wind anomalies for 2018-2019

Near-surface wind anomalies over the tropical Pacific (5°N-5°S) during 2018, starting at the top in December 2018 and ending in early June 2019 at the bottom. Each row in this type of image is the departure from average (1981-2010) at that time. Pink areas show weaker-than-average trade winds, and green stronger. NOAA Climate.gov image, based on data provided by the Climate Prediction Center.

The effect of these weaker winds can be seen in the recent increase of warmer-than-average water under the surface of the tropical Pacific, as a new downwelling Kelvin wave has formed. (But not a Kelvin wave of cinematic proportions.)

Over the next few months, this Kelvin wave will likely (66% chance!) supply the surface with the warmer-than-average water required to continue El Niño through the summer. Since the end of May, the trade winds have strengthened, mostly due to an active Madden-Julian Oscillation. The MJO has been distracting the tropical Pacific before and during this El Niño, providing “subseasonal variability” (changes in the atmospheric pattern on timescales of weeks).

For an idea of the longer term, we can look to computer models. Overall, the models in the current forecast predict that the Niño3.4 Index will stay near to slightly above the El Niño threshold of 0.5°C warmer than average. Some models are in the ENSO-neutral range, around average. It’s interesting that nearly all of the models remain between 0.0 and +1.0°C through the fall and into the winter; this level of agreement between the models would usually contribute to more confidence in the forecast. However, the mix of predictions above and below the El Niño threshold means that, while El Niño is the favorite for next winter, forecasters are giving it only a 50% chance at this point.

Stay with us while we surf the Kelvin waves and sail the trade winds, and we’ll keep you updated on all things ENSO!

Comments

Is this weak El Niño being helped by a warming phase of the PDO?

Good information. If I'm not mistaken, southern Arizona had 3 back-to-back winter "100 year" flood events; 79,80,81?

Panama is currently experiencing one of the most severe droughts in its history. This drought is widely attributed to the on going El Nino. At the same time, the northern coast of Australia is experiencing a severe and prolonged drought, which is also widely attributed to the on going El Nino. In both areas, one of the major impacts is extensive mangrove diebacks. My question... Are these two large droughts on opposite sides of the Pacific really connected and caused by this transPacific El Nino event?

Given ENSO's far-reaching impacts, it is possible that this El Nino is contributing to the drought in both regions.  However, it is possible that other factors are contributing as well.  For example, Australia's Bureau of Meteorology is suggesting that the Indian Ocean Dipole is an important factor for Australia's ongoing dry conditions.  

Modoki El Niño till mid spring 2020 (northern hemisphere) See in NOAA https://www.cpc.ncep.noaa.gov/products/people/wwang/cfsv2fcst/CFSv2SST8210.html and models in http://www.bom.gov.au/climate/model-summary/#tabs=Models&region=NINO34 (Bureau- Australia) Niño 1.2 region more coller that Niño 3.4 and Niño 4 in all models.

Just wanted to mention, as we have discussed before, that the El Niño "flavor" is strongly tied to its strength.  It's a bit early to pin down the details, like the possible strength of the event, so we should expect that the forecast may evolve over the next few months.   

In reply to by Andrey Fraga

Am glad El Nino 2019 finally kicked earlier this year in Africa. Left short rains in Arusha TZ[Tanzania] in Jan and spent 2 months driving through SW Africa. Started to dry out in southern TZ Lake Tanganyika basin and after Victoria Falls only 20 min rain in 6 weeks. Our luck held through Malawi which we drove through 1 week before big typhoon hit Mozambique in March. On Zanzibar early April watching these dramatic pre rainy season clouds roll in of Indian ocean. Weather is fun when it cooperates with your vacation.

Reading the Australia BOM, it says the El Nino alert is Inactive, as of their last update on June 25. Would you agree with this?

We will update our ENSO discussion on July 11th.  Keep in mind the criteria for El Nino is slightly different for the US than for Australia.  

In reply to by Boyd Venable

Today, it was 90 degrees outside at my home in Wasilla, Alaska at three o’clock in the afternoon. People who deny man made climate change attribute the much warmer than usual weather we are experiencing to the El Niño effect. In the early 1990’s, when I arrived in Alaska, I remember summers being cool. The temperature would be around 70 degrees and drop at night. What’s happening?

It seems to me like the frequency and aggressiveness of storms etc seems to be worsening across the globe. Is it possible that this down to the damage is humans have caused to the earths surface and atmosphere. I have noticed this living in the U.K. that we now have worse floods, hotter summers etc. This worrying for the future. Working in an engineering company any disruption to power lines has a detrimental effect on our business. We have also suffered from indirect flooding problems in regard to material supplies. We need to put greater effort into looking after the planet as it is detrimental to not only our livelihood but human survival. https://www.carbonbrief.org/mapped-how-climate-change-affects-extreme-weather-around-the-world https://www.nationalgeographic.com/climate-change/how-to-live-with-it/weather.html

Add new comment

CAPTCHA
Enter the characters shown in the image.
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.