In this activity students use NASA satellite data to study changes in temperature and snow-ice coverage in the South Beaufort Sea, Alaska. They will then correlate the data with USGS ground tracking of polar bears and relate their findings to global change, sea ice changes, and polar bear migration and survival.

This video on phenology of plants and bees discusses the MODIS satellite finding that springtime greening is happening one half-day earlier each year and correlates this to bee pollination field studies.

Set of annotated graphs indicating sea level change observed and projected (projections from IPCC 2001).

This simulation allows students to explore the change in sea surface pH levels with increasing CO2 levels.

In this activity for undergraduates, students explore the CLIMAP (Climate: Long-Range Investigation, Mapping and Prediction) model results for differences between the modern and the Last Glacial Maximum (LGM) and discover the how climate and vegetation may have changed in different regions of the Earth based on scientific data.

This is a graphic that illustrates anomalies in tropospheric temperatures over a 50-year time period and is based on 7 different datasets superimposed on each other. It is one of 9 climate indicators documented in the AMS State of the Climate report.

This is an interactive map of California and the Sierra Nevada mountains, showing projected variations in water stored in snowpack, from 1950 to 2090, assuming low or high emission scenarios over that period of time. Interactive can be adjusted to show different months of the year and various climate models, graphed by site.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

This interactive visualization is a suite of weather and climate datasets as well as tools with which to manipulate and display them visually.

In this activity, students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

Pages