This short video clip summarizes NOAA's annual State of the Climate Report for 2009. It presents a comprehensive summary of Earth's climate in 2009 and establishes the last decade as the warmest on record. Reduced extent of Arctic sea ice, glacier volume, and snow cover reflect the effects of rising global temperature.

This PBS video focuses on sea level rise in Norfolk, Virginia and how the residents are managing the logistical, financial and political implications. Science journalists who have been studying Norfolk's rising sea level problems are interviewed, as well as local residents who are being impacted.

This video explains how scientists construct computer-generated climate models to forecast weather, understand climate, and project climate change. It discusses how different types of climate models can be used and how scientists use computers to build these models.

This interactive world map shows the impact of a global temperature rise of 4 degrees Celsius on a variety of factors including agriculture, marine life, fires, weather patterns, and health. Hot Spots can be clicked on to get more specific information about the problems in different regions.

In this video from the Polaris Project Website, American and Siberian university students describe their research on permafrost.

This high-resolution narrated video shows levels and movements of CO2 globally through the course of a year.

This is an interactive graph that involves records of ice cover in two Wisconsin lakes - Lake Mendota and Lake Monona - from 1855-2010.

This is an interactive map of California and the Sierra Nevada mountains, showing projected variations in water stored in snowpack, from 1950 to 2090, assuming low or high emission scenarios over that period of time. Interactive can be adjusted to show different months of the year and various climate models, graphed by site.

In this activity students work with data to analyze local and global temperature anomaly data to look for warming trends. The activity focuses on the Great Lakes area.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

Pages