In this hands-on activity, students will learn about dendrochronology (the study of tree rings to understand ecological conditions in the recent past) and come up with conclusions as to what possible climatic conditions might affect tree growth in their region. Students determine the average age of the trees in their schoolyard, investigate any years of poor growth, and draw conclusions about the reasons for those years.

In this activity, students create graphs of real temperature data to analyze climate trends by analyzing the global temperature record from 1867 to the present. Long-term trends and shorter-term fluctuations are both evaluated. The data is examined for evidence of the impact of natural and anthropogenic climate forcing mechanisms on the global surface temperature variability. Students are prompted to determine the difficulties scientists face in using this data to make climate predictions.

In this video, students learn how scientific surveys of wildlife are performed at a site in Yosemite, California, and how these surveys are being used -- in conjunction with studies from the early 1900s -- to provide evidence that animal populations in Yosemite have shifted over time in response to rising temperatures.

This video segment highlights research that supports the idea that warmer oceans generate and sustain more intense hurricanes.

In this video, students see how data from the ice core record is used to help scientists predict the future of our climate. Video features ice cores extracted from the WAIS Divide, a research station on the West Antarctic Ice Sheet.

This is an interactive map of California and the Sierra Nevada mountains, showing projected variations in water stored in snowpack, from 1950 to 2090, assuming low or high emission scenarios over that period of time. Interactive can be adjusted to show different months of the year and various climate models, graphed by site.

In this activity, students estimate the drop in sea level during glacial maxima, when ice and snow in high latitudes and altitudes resulted in lower sea levels. Students estimate the surface area of the world's oceans, use ice volume data to approximate how much sea levels dropped, and determine the sea-level rise that would occur if the remaining ice melted.

This is a figure from the 2007 IPCC Assessment Report 4 on atmospheric concentrations of carbon dioxide, methane and nitrous oxide over the last 10,000 years (large panels) and since 1750 (inset panels).

This video is the third in a three-part series by the Sea Change project, about scientists' search for Pleiocene beaches in Australia and elsewhere to establish sea level height during Earth's most recent previous warm period. This segment features the research of Jerry Mitrovica, Harvard geophysicist.

Students use the GLOBE Student Data Archive and visualizations to display current temperatures on a map of the world. They explore the patterns in the temperature map, looking especially for differences between different regions and hemispheres and zoom in for a closer look at a region that has a high density of student reporting stations (such as the US and Europe). Students compare and contrast the patterns in these maps, looking for seasonal patterns.