This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2016, and then back in time to 800,000 years before the present.

In this video, students see how data from the ice core record is used to help scientists predict the future of our climate. Video features ice cores extracted from the WAIS Divide, a research station on the West Antarctic Ice Sheet.

This is a sequence of 5 classroom activities focusing on the El NiÃo climate variability. The activities increase in complexity and student-directedness. The focus of the activities is on accessing and manipulating real data to help students understand El NiÃo as an interaction of Earth systems.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

This animated visualization of precession, eccentricity, and obliquity is simple and straightforward and provides text explanations. It is a good starting place to show Milankovitch cycles.

This video illustrates how atmospheric particles, or aerosols (such as black carbon, sulfates, dust, fog), can affect the energy balance of Earth regionally, and the implications for surface temperature warming and cooling.

This static graph of changes in CO2 concentrations goes back 400,000 years, showing the dramatic spike in recent years.

This is an activity designed to allow students who have been exposed to the El NiÃo-Southern Oscillation to analyze the La NiÃa mechanism and predict its outcomes in a case study format.

In this video, a team of paleontologists, paleobotanists, soil scientists, and other researchers take to the field in Wyoming's Bighorn Basin to document how the climate, plants, and animals there changed during the Paleocene- Eocene Thermal Maximum (PETM) when a sudden, enormous influx of carbon flooded the ocean and atmosphere for reasons that are still unclear to scientists. The PTEM is used as an analog to the current warming occurring. The scientists' research may help inform our understanding of current increases in carbon in the atmosphere and ocean and the resulting impact on ecosystems. Supporting materials include essay and interactive overview of animals that existed in the Basin after the PETM event.

This classroom activity is aimed at an understanding of different ecosystems by understanding the influence of temperature and precipitation. Students correlate graphs of vegetation vigor with those of temperature and precipitation data for four diverse ecosystems, ranging from near-equatorial to polar, and spanning both hemispheres to determine which climatic factor is limiting growth.

Pages