This interactive visualization is a suite of weather and climate datasets as well as tools with which to manipulate and display them visually.

In this activity for undergraduate students, learners build a highly simplified computer model of thermohaline circulation (THC) in the North Atlantic Ocean and conduct a set of simulation experiments to understand the complex dynamics inherent in this simple model.

This short NASA video focuses on the Aquarius satellite, launched on June 10, 2011 to observe how variations in ocean salinity relate to climatic changes. By measuring salinity globally, Aquarius shows the ocean's role in climate change and climate's effects on ocean circulation.

In this activity, students compare carbon dioxide data from Mauna Loa Observatory, Barrow, Alaska, and the South Pole over the past 40 years. Students use the data to learn about what causes short-term and long-term changes in atmospheric carbon dioxide. This activity makes extensive use of Excel.

This activity focuses on reconstructing the Paleocene-Eocene Thermal Maximum (PETM) as an example of a relatively abrupt global warming period. Students access Integrated Ocean Drilling Program (IODP) sediment core data with Virtual Ocean software in order to display relevant marine sediments and their biostratigraphy.

This NASA animation of the Five-Year Average Global Temperature Anomalies from 1881 to 2009 shows how temperature anomalies have varied in the last 130 years. The color-coded map displays a long-term progression of changing global surface temperatures from 1881 to 2009. Dark red indicates the greatest warming and dark blue indicates the greatest cooling.

This is an interactive webtool that allows the user to choose a state or country and both assess how climate has changed over time and project what future changes are predicted to occur in a given area.

Students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

This Flash-based simulation explores the relationship between carbon emissions and atmospheric carbon dioxide using two main displays: (1) graphs that show the level of human-generated CO2 emissions, CO2 removals, and the level of CO2 in the atmosphere, and (2) a bathtub animation that shows the same information as the graphs. The bathtub simulation illustrates the challenges of reducing greenhouse gas concentrations in the atmosphere.

This video explains how scientists construct computer-generated climate models to forecast weather, understand climate, and project climate change. It discusses how different types of climate models can be used and how scientists use computers to build these models.

Pages