This short animated video provides a general overview of the role of carbon dioxide in supporting the Greenhouse Effect.

This video provides an overview of how computer models work. It explains the process of data assimilation, which is necessary to ensure that models are tied to reality. The video includes a discussion of weather models using the Goddard Earth Observing System (GEOS-5) model and climate models using the MERRA (Modern Era Retrospective Analysis for Research and Applications) technique.

This map shows how much electrical power is produced from wind in each state from 1999 through 2010. The animation shows a general increase in the amount of wind power produced per state and the number of states producing it.

This video illustrates the advantages of woody biomass as a renewable, carbon-neutral energy source. Woody biomass is underutilized and often overlooked as a renewable fuel, and it can be harvested sustainably and burned cleanly.

A series of activities designed to introduce students to the role of sediments and sedimentary rocks in the global carbon cycle and the use of stable carbon isotopes to reconstruct ancient sedimentary environments. Students will make some simple calculations, think about the implications of their results, and see an optional demonstration of the density separation of a sediment sample into a light, organic and a heavier mineral fraction.

In this activity students work with real datasets to investigate a real situation regarding disappearing Arctic sea ice. The case study has students working side-by-side with a scientist from the National Snow and Ice Data Center and an Inuit community in Manitoba.

This data viewing tool from NOAA is highly engaging and offers nearly instant access to dozens of datasets about Earth. Users select from atmosphere, ocean, land, cryosphere, and climate, and drill down from there into more detailed categories.

In this video Dr. Richard Alley poses and addresses a simple question: What does carbon dioxide have to do with global warming?

This hands-on activity is a kinesthetic game illustrating the dynamics of the carbon cycle. Acting as carbon atoms, students travel from one carbon reservoir to another; at each reservoir they determine, by rolling dice, how long they stay in the reservoir or how likely it is that they will move to another carbon reservoir.

This animation depicts real-time wind speed and direction at selected heights above Earth's surface, ocean surface currents, and ocean surface temperatures and anomalies.

Pages