This video introduces the concept of daylighting - the use of windows or skylights for natural lighting and temperature regulation - and how it is a building strategy that can save operating costs for homeowners and businesses.

This NASA animation depicts thermohaline circulation in the ocean and how it relates to salinity and water density. It illustrates the sinking of water in the cold, dense ocean near Iceland and Greenland. The surface of the ocean then fades away and the animation pulls back to show the global thermohaline circulation system.

This animation illustrates how the hardiness zones for plants have changed between 1990 and 2006 based data from 5,000 National Climatic Data Center cooperative stations across the continental United States.

In this video clip from Earth: The Operators' Manual, host Richard Alley discusses China's efforts to develop clean energy technologies and to reduce CO2 in the atmosphere, by building coal plants using CO2 sequestration technology. (scroll down page for video)

This video is about Greenland's ice sheet, accompanied by computer models of the same, to show how the ice is melting, where the meltwater is going, and what it is doing both on the surface and beneath the ice.

This 15-panel interactive from NOVA Online describes some of the factors (e.g., Earth's rotation and the sun's uneven heating of Earth's surface) contributing to the formation of the high-speed eastward flows of the jet streams, found near the top of the troposphere. These jet streams play a major role in guiding weather systems.

This video describes how concentrating solar power (CSP) technologies reflect and collect solar energy to generate electricity. This video explains what CSP is, how it works, and focuses on parabolic troughs.

This NASA animation of the Five-Year Average Global Temperature Anomalies from 1881 to 2009 shows how temperature anomalies have varied in the last 130 years. The color-coded map displays a long-term progression of changing global surface temperatures from 1881 to 2009. Dark red indicates the greatest warming and dark blue indicates the greatest cooling.

This set of animations and interactive simulations from the Byrd Polar Research Center at Ohio State University helps students develop an understanding of models used to understand the Earth System. Students consider the types of data that need to be included in a climate model, looking at inputs and outputs as well as variables, such as land surface, and how to measure changes of different parts of Earth's surface over time.

This interactive lets students determine the extent of average temperature change both in their community and anywhere else in the world, relative to average temperatures for the three decades between 1951 and 1980.

Pages