In this activity, students learn about the tools and methods paleoclimatologists use to reconstruct past climates. In constructing sediment cores themselves, students will achieve a very good understanding of the sedimentological interpretation of past climates that scientists can draw from cores.

In this activity, students distinguish between directly and indirectly transmitted diseases and participate in a group game to simulate the spread of vector-borne diseases. They then research a particular pathogenic disease to learn how global warming and biodiversity loss can affect disease transmission.

This small-group activity uses engineering concepts to design energy systems for three off-the-grid towns in Mali, Ethiopia, and Namibia.

In this activity, students are introduced to tree rings by examining a cross section of a tree, also known as a 'tree cookie.' They discover how tree age can be determined by studying the rings and how ring thickness can be used to deduce times of optimal growing conditions. Next, they investigate simulated tree rings applying the scientific method to explore how climatic conditions varied over time.

In this activity, students use Google Earth and team up with fictional students in Chersky, Russia to investigate possible causes of thawing permafrost in Siberia and other Arctic regions. Students explore the nature of permafrost and what the effects of thawing permafrost mean both locally and globally. Next, students use a spreadsheet to explore soil temperature data from permafrost boreholes and surface air temperature datasets from in and around the Chersky region for a 50-year time span.

In this activity, students consider Greenland reflectivity changes from 2000 to 2012 and what albedo anomalies may indicate about how the Greenland ice sheet is changing in a case study format.

This multi-week project begins with a measurement of baseline consumptive behavior followed by three weeks of working to reduce the use of water, energy, high-impact foods, and other materials. The assignment uses an Excel spreadsheet that calculates direct energy and water use as well as indirect CO2 and water use associated with food consumption. After completing the project, students understand that they do indeed play a role in the big picture. They also learn that making small changes to their lifestyles is not difficult and they can easily reduce their personal impact on the environment.

This activity introduces students to global climate patterns by having each student collect information about the climate in a particular region of the globe. After collecting information, students share data through posters in class and consider factors that lead to differences in climate in different parts of the world. Finally, students synthesize the information to see how climate varies around the world.

This activity from the Department of Energy provides background information about solar ovens and instructions on building a simple model solar cooker.

This is the first of nine lessons in the Visualizing and Understanding the Science of Climate Change website. This lesson is an introduction to Earth's climate and covers key principles regarding Earth's unique climate, atmosphere, and regional and temporal climate differences.

Pages