This short animated video provides a general overview of the role of carbon dioxide in supporting the Greenhouse Effect.

In this activity, students explore the way that human activities have changed the way that carbon is distributed in Earth's atmosphere, lithosphere, biosphere and hydrosphere.

This is a jigsaw activity in which students are assigned to research one step out of five in the geochemical process stages of the organic carbon cycle. Students then teach their step in cross-step groups until everyone understands all five process stages.

This interactive animation focuses on the carbon cycle and includes embedded videos and captioned images to provide greater clarification and detail of the cycle than would be available by a single static visual alone.

This short activity provides a way to improve understanding of a frequently-published diagram of global carbon pools and fluxes. Students create a scaled 3-D visual of carbon reservoirs and the movement of carbon between reservoirs.

This set of activities is about carbon sources, sinks, and fluxes among them - both with and without anthropogenic components.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

This static image from NOAA's Pacific Marine Environmental Laboratory Carbon Program offers a visually compelling and scientifically sound image of the sea water carbonate chemistry process that leads to ocean acidification and impedes calcification.

This is a long-term inquiry activity in which students investigate locations they believe harbor cellulose-digesting microbes, collect samples, isolate them on selective media, and screen them for cellulase activity. These novel microbes may be useful for the production of cellulosic ethanol. In the process they learn about plating techniques, serial dilutions, symbiotic relationships and enzyme specificity. Two methods are provided, one focusing on isolation of pure microbial strains, the other focusing on finding symbiotic communities of microbes.

This is an interactive visualization of the Carbon Cycle, through short-term and long-term processes.