This is a photo essay linked to a New York Times story about climate-related stressors on forests -- including mountain pine beetles, forest fires, forest clearance, and ice storms -- and the importance of protecting forests as an important carbon sink.

In this experiment, students investigate the importance of carbon dioxide to the reproductive growth of a marine microalga, Dunalliela sp. (Note that the directions are for teachers and that students protocol sheets will need to be created by teachers.)

This narrated slide presentation shows the carbon cycle, looking at various parts of this biogeochemical sequence by examining carbon reservoirs and how carbon is exchanged among them and the atmosphere.

In this activity, students learn the basics of photosynthesis and respiration within the carbon cycle. Students are assigned to be different atoms or energy and interact with each other by linking together to form molecules and absorb or release energy.

This activity introduces students to different forms of energy, energy transformations, energy storage, and the flow of energy through systems. Students learn that most energy can be traced back to nuclear fusion on the sun.

This interactive graphic outlines the carbon cycle, with clickable text boxes that explain and elaborate each component.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

Interactive visualization that provides a basic overview of the Earth's carbon reservoirs and amount of carbon stored in each, CO2 transport among atmosphere, hydrosphere, geosphere, and biosphere, and a graph comparing global temp (deg C) and atmospheric CO2 levels (ppm) over the past 1000 years.

This interactive shows the different components of the ocean biological pump, i.e., how carbon in the form of either plankton or particles moves into the ocean's depths. It illustrates the situation at the surface, 0-100 meters, 100-500 meters, and below 500 meters.

In this 3-part lab activity, students investigate how carbon moves through the global carbon cycle and study the effects of specific feedback loops on the carbon cycle.