d. Scientific observations indicate that global climate has changed in the past, is changing now, and will change in the future. The magnitude and direction of this change is not the same at all locations on Earth.

In this lesson, students examine and interpret varied observational datasets and are asked to determine whether the data supports or does not support the statement: climate change is occurring in Colorado.

In this activity, students review techniques used by scientists, as they analyze a 50-year temperature time series dataset. The exercise helps students understand that data typically has considerable variability from year to year and to predict trends or forecast the future, there is value in long-term data collection.

This multi-part activity introduces users to normal seasonal sea surface temperature (SST) variation as well as extreme variation, as in the case of El NiÃo and La NiÃa events, in the equatorial Pacific Ocean. Via a THREDDS server, users learn how to download seasonal SST data for the years 1982 to 1998. Using a geographic information system (GIS), they visualize and analyze that data, looking for the tell-tale SST signature of El Nino and La Nina events that occurred during that time period.

This activity engages learners to make a model of sediment cores using different kinds of glass beads and sand. They learn how to examine the types, numbers, and conditions of diatom skeletons in the model sediment cores and tell something about the hypothetical paleoclimate that existed when they were deposited. The students get to be climate detectives.

This activity addresses naturally occurring climate change involving ENSO (El-NiÃo Southern Oscillation). In this activity, students play the role of a policy maker in Peru. First, they determine what sort of ENSO variation is occurring. Then, they must decide how to allocate Peru's resources to manage for possible weather-related problems.

In this activity, students make a model sea floor sediment core using two types of buttons to represent fossil diatoms. They then compare the numbers of diatom fossils in the sediment at different depths to determine whether the seas were free of ice while the diatoms were alive.

In this activity for undergraduates, students explore the CLIMAP (Climate: Long-Range Investigation, Mapping and Prediction) model results for differences between the modern and the Last Glacial Maximum (LGM) and discover the how climate and vegetation may have changed in different regions of the Earth based on scientific data.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

Pages