d. Humans may be able to mitigate climate change or lessen its severity by reducing greenhouse gas concentrations through processes that move carbon out of the atmosphere or reduce greenhouse gas emissions.

C-Learn is a simplified version of the C-ROADS simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

This is a series of 10 short videos, hosted by National Science Foundation, each featuring scientists, research, and green technologies. The overall goal of this series is to encourage people to ask questions and look beyond fossil fuels for innovative solutions to our ever-growing energy needs.

This video describes the work of scientists who are studying the precise combination of trees that would be most effective in reducing the level of greenhouse gases in the air around Syracuse, NY. This is a pilot study that will serve as a model for other urban areas.

This video segment examines ethanol, a cleaner-burning fuel alternative to gasoline, and the efforts to produce it more efficiently.

This as a 2-part activity in which students study the properties of CO2 in a lab and then use Web resources to research different types of carbon capture. A video lecture accompanies the activity.

This carbon calculator, developed by the EPA, guides students in calculating their carbon footprint and then using that information to make decisions about how to reduce their carbon emissions.

In this video from Young Voices for the Planet, four middle-school girls (The Green Team) talk about their efforts to work with their peers to reduce the carbon footprint of their school and how they made the school more energy efficient.

This Flash-based simulation explores the relationship between carbon emissions and atmospheric carbon dioxide using two main displays: (1) graphs that show the level of human-generated CO2 emissions, CO2 removals, and the level of CO2 in the atmosphere, and (2) a bathtub animation that shows the same information as the graphs. The bathtub simulation illustrates the challenges of reducing greenhouse gas concentrations in the atmosphere.

This simulation provides scenarios for exploring the principles of climate dynamics from a multi-disciplinary perspective. Inter-connections among climate issues, public stakeholders and the governance spheres are investigated through creative simulations designed to support learners' understanding of international climate change negotiations.

Pages