b. Environmental observations are the foundation for understanding the climate system. From the bottom of the ocean to the surface of the Sun, instruments on weather stations, buoys, satellites, and other platforms collect climate data. To learn about past climates, scientists use natural records, such as tree rings, ice cores, and sedimentary layers. Historical observations, such as native knowledge and personal journals, also document past climate change.

This activity offers an introduction to working with Geographic Information Systems (GIS) by using field data on the Urban Heat Island Effect that was collected by students. The field data is entered in the GIS, displayed in a map, and analyzed.

This audio slideshow/video describes the Greenland ice sheet and the difficulties in getting scientific measurements at the interface between the ice and the ocean. It features the work of a researcher from Woods Hole Oceanographic Institute researcher. She gives a personal account of her work on the recent increase in melting of glaciers, the challenges of working in Greenland, and the reasons why so many climate scientists are looking there for answers to questions about climate change.

This audio slideshow examines the changes in the ecosystem that will occur to the Arctic due to increasing temperatures and disappearing sea ice.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns and to understand annual sediment deposition and how it relates to weather and climate patterns.

This short video describes how the compression of Antarctic snow into ice captures air from past atmospheres. It shows how ice cores are drilled from the Antarctic ice and prepared for shipment and subsequent analysis.

This color-coded map displays a progression of changing five-year average global surface temperatures anomalies from 1880 through 2010. The final frame represents global temperature anomalies averaged from 2006 to 2010. The temperature anomalies are computed relative to the base period 1951-1980.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2011, and then back in time to 800,000 years before the present.

In this video, the mountain pine beetle problem is explained by two scientist. Their research investigates the beetle and how climate change is impacting its spread.

Pages