This is a utility-scale, land-based map of the mean annual wind speed 80 meters above the ground. This map can be used to evaluate the potential for wind energy in the US. State maps and more information are linked from the main map.

In this learning activity, students analyze various sources of information to determine the best location for a new wind farm.

This learning activity that asks students to consider the impacts of different types of electricity generation on wildlife. Students are asked some questions about their beliefs and knowledge on the topic, and then read a summary of a life cycle assessment of wildlife impacts for electricity generation via coal, nuclear power, hydropower, and wind power. Students are asked to rank the energy sources from least to most harmful impact on wildlife, and reflect on their rankings.

This online activity challenges students to design a renewable energy system for one of five different cities, each with different energy resource potential and budgets. Students can test their designs using real-time weather data in each city.

In this activity, students use Google Earth to investigate ideal features of wind farms.

In this activity, students explore real data about renewable energy potential in their state using a mapping tool developed by NREL (National Renewable Energy Laboratory) to investigate the best locations for wind energy, solar energy, hydropower, geothermal energy, and biomass.

This is a hands-on activity students design, build, and test. They compare the energy-generating capacities of vertical- and horizontal- axis wind turbine prototypes they have built as potential sources for power in a home.

Pages