This video segment from 'What's Up in the Environment,' shares how an entire home can be constructed using green energy sources (solar and geothermal energy). Video is narrated by young boy whose father is the chief engineer on the project.

In this video segment from NOVA's Saved By the Sun hour-long video, students learn about photovoltaics and see how two families are using solar technologies in their homes. The video introduces the ideas of state incentives and net metering benefits.

This set of six interactive slides showcases how a typical photovoltaic cell converts solar energy into electricity. Explore the components of a photovoltaic cell, including the silicon layers, metal backing, antireflective coating, and metal conductor strips. Using animations, investigate why the silicon layers are doped with phosphorous and boron, and how an electric field is used to generate electricity from sunlight.

In this activity, students explore what types of energy resources exist in their state by examining a state map and data from the Energy Information Administration. Students identify the different energy sources in their state, including the state's renewable energy potential.

This set of flow charts illustrates energy sources and uses in 136 countries around the world. The data from 2007, but is still useful for comparing energy patterns in different countries. This is the first comprehensive package of worldwide, country-level energy flowcharts that has been produced.

This is a series of 10 short videos, hosted by the National Science Foundation, each featuring scientists, research, and green technologies. The overall goal of this series is to encourage people to ask questions and look beyond fossil fuels for innovative solutions to our ever-growing energy needs.

In this activity, students explore energy production and consumption by contrasting regional energy production in five different US regions.

Sankey (or Spaghetti) diagrams parse out the energy flow by state, based on 2008 data from the Dept. of Energy. These diagrams can help bring a local perspective to energy consumption. The estimates include rejected or lost energy but don't necessarily include losses at the ultimate user end that are due to lack of insulation.

Students investigate passive solar building design with a focus on heating. Insulation, window placement, thermal mass, surface colors, and site orientation are addressed in the background materials and design preparation. Students test their projects for thermal gains and losses during a simulated day and night then compare designs with other teams for suggestions for improvements.

Student teams design and build solar water heating devices that mimic those used in residences to capture energy in the form of solar radiation and convert it to thermal energy. In this activity, students gain a better understanding of the three different types of heat transfer, each of which plays a role in the solar water heater design. Once the model devices are constructed, students perform efficiency calculations and compare designs.

Pages