Student teams design and build solar water heating devices that mimic those used in residences to capture energy in the form of solar radiation and convert it to thermal energy. In this activity, students gain a better understanding of the three different types of heat transfer, each of which plays a role in the solar water heater design. Once the model devices are constructed, students perform efficiency calculations and compare designs.

This interactive provides two scenarios for students to look at issues related to energy and climate change: from the perspective of either a family, or a monarch.

This activity engages students in a role play to negotiate an agreement between the United States and China about climate change policies. Students use given background material or can do their own additional research to present their assigned stakeholder's position in a simulated negotiation.

Students investigate passive solar building design with a focus on heating. Insulation, window placement, thermal mass, surface colors, and site orientation are addressed in the background materials and design preparation. Students test their projects for thermal gains and losses during a simulated day and night then compare designs with other teams for suggestions for improvements.

This interactive/applet allows the user to explore the potential increase in carbon emissions over the next 50 years, subject to modifications made by the user in various technologies that impact carbon output. Part of the Visualizing and Understanding the Science of Climate Change module.

This as a 2-part activity in which students study the properties of CO2 in a lab and then use Web resources to research different types of carbon capture. A video lecture accompanies the activity.

In this classroom activity, students measure the energy use of various appliances and electronics and calculate how much carbon dioxide (CO2) is released to produce that energy.

In this activity, students learn about the urban heat island effect by investigating which areas of their schoolyard have higher temperatures - trees, grass, asphalt, and other materials. Based on their results, they hypothesize how concentrations of surfaces that absorb heat might affect the temperature in cities - the urban heat island effect. Then they analyze data about the history of Los Angeles heat waves and look for patterns in the Los Angeles climate data and explore patterns.

This video segment from What's Up in the Environment shares how an entire home can be constructed using green energy sources (solar and geothermal energy). Video is narrated by young boy whose father is the chief engineer on the project.

This is a team-based activity that teaches students about the scale of the greenhouse gas problem and the technologies that already exist which can dramatically reduce carbon emissions. Students select carbon-cutting strategies to construct a carbon mitigation profile, filling in the wedges of a climate stabilization triangle.

Pages