This activity introduces students to the process of converting sunlight into electricity through the use of photovoltaics (solar cells). Students complete a reading passage with questions and an inquiry lab using small photovoltaic cells.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.

Hands-on laboratory activity that allows students to investigate the effects of distance and angle on the input of solar radiation at Earth's surface, the role played by albedo, the heat capacity of land and water, and how these cause the seasons. Students predict radiative heating based on simple geometry and experiment to test their hypotheses.

This Motions of the Sun Lab is an interactive applet from the University of Nebraska-Lincoln Astronomy Applet project.

In this short, hands-on activity, students build simple molecular models of 4 atmospheric gases (O2, N2, C02, and methane), compare their resonant frequencies, and make the connection between resonant frequency and the gas's ability to absorb infrared radiation.

In this activity, students analyze data detailing global energy sources and sinks (uses) and construct a diagram to show the relative scale and the connections between them. Discussions of scale; historical, socio-environmental, and geographic variation in this data; and implications for future energy use are included.

This narrated slide presentation shows the carbon cycle. It looks at various parts of this biogeochemical sequence by examining carbon reservoirs and how carbon is exchanged among them.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

This is the seventh of nine lessons in the 'Visualizing and Understanding the Science of Climate Change' website. This lesson addresses climate feedback loops and how these loops help drive and regulate Earth's unique climate system.