In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

This is an interactive visualization of the Carbon Cycle, through short-term and long-term processes.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

This activity engages learners in exploring the impact of climate change on arctic sea ice in the Bering Sea. They graph and analyze sea ice extent data, conduct a lab on thermal expansion of water, and then observe how a scientist collects long-term data on a bird population.

This short video illustrates the phenomena of El NiÃo and La NiÃa: their relationships to tradewinds and surface water temperatures, and their effects on precipitation in North America.

This short activity provides a way to improve understanding of a frequently-published diagram of global carbon pools and fluxes. Students create a scaled 3-D visual of carbon reservoirs and the movement of carbon between reservoirs.

In this hands-on lesson, students measure the effect of distance and inclination on the amount of heat felt by an object and apply this experiment to building an understanding of seasonality. In Part 1, the students set up two thermometers at different distances from a light bulb and record their temperatures to determine how distance from a heat source affects temperature. In Part 2, students construct a device designed to measure the temperature as a function of viewing angle toward the Sun by placing a thermometer inside a black construction paper sleeve, and placing the device at different angles toward the Sun. They then explain how distance and inclination affect heat and identify situations where these concepts apply, such as the seasons on Earth and the NASA Mercury MESSENGER mission.

This is a static visualization, referenced from a UNEP rapid response assessment report entitled In Dead Water, depicting the estimated contributions to sea-level rise from 1993 - 2003.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

Students perform a lab to explore how the color of materials at Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark-colored materials become hotter.