In this activity, students learn about the urban heat island effect by investigating which areas of their schoolyard have higher temperatures - trees, grass, asphalt, and other materials. Based on their results, they hypothesize how concentrations of surfaces that absorb heat might affect the temperature in cities - the urban heat island effect. Then they analyze data about the history of Los Angeles heat waves and look for patterns in the Los Angeles climate data and explore patterns.

This interactive visualization is a suite of weather and climate datasets as well as tools with which to manipulate and display them visually.

In this short video segment Native Americans talk about climate change and how it impacts their lives as they experience unexpected changes in environmental conditions. They describe observed changes in seasonality, how these changes affect ecosystems and habitats, their respect for Mother Earth, and the participation of tribal colleges in climate change research projects.

This activity is a research project in which students explore and synthesize key paleoceanographic evidence for the Paleocene-Eocene Thermal Maximum (PETM) as found in marine sediment cores collected and analyzed during Ocean Drilling Program Leg 208 (Walvis Ridge).

This video describes why tropical ice cores are important and provide different information than polar ice cores, why getting them now is important (they are disappearing), and how scientists get them. The work of glaciologist Lonnie Thompson is featured, with a focus on his work collecting cores of ice from high mountain glaciers that contain significant data about past climate change.

In this activity, students explore how the timing of color change and leaf drop of New England's deciduous trees is changing.

In this activity, students use Google Earth to explore global temperature changes during a recent 50 - 58 year period. They also explore, analyze, and interpret climate patterns of 13 different cities, and analyze differences between weather and climate patterns.

This video is part two of a seven-part National Academies series, Climate Change: Lines of Evidence. The video outlines, with the use of recent research and historical data, how we know that the Earth is warming.

This video profiles glaciologist Lonnie Thompson and his research into tropical mountain glaciers as a way to understand climate history. Beginning in the 1970s, Thompson recognized that tropical ice cores contain information relating to tropical climate phenomena, including El NiÃo events and monsoons. These phenomena are not archived in ice from polar regions. Thompson explains that his archive of ice cores is full of clues that, taken together with records collected from around the world, can help scientists create a timeline that tells Earth's climate story.

In this activity, students chart temperature changes over time in Antarctica's paleoclimate history by reading rock cores. Students use their data to create an interactive display illustrating how Antarctica's climate timeline can be interpreted from ANDRILL rock cores.

Pages