A collection of repeat photography of glaciers from the National Snow and Ice Data Center (NSIDC). The photos are taken years apart at or near the same location, and at the same time of year. These images illustrate how dramatically glacier positions can change even over a relatively short period in geological time: 60 to 100 years. Background essay and discussion questions are included.

This activity introduces students to visualization capabilities available through NASA's Earth Observatory, global map collection, NASA NEO and ImageJ. Using these tools, students build several animations of satellite data that illustrate carbon pathways through the Earth system.

In this activity, students estimate the drop in sea level during glacial maxima, when ice and snow in high latitudes and altitudes resulted in lower sea levels. Students estimate the surface area of the world's oceans, use ice volume data to approximate how much sea levels dropped, and determine the sea-level rise that would occur if the remaining ice melted.

This short video clip summarizes NOAA's annual State of the Climate Report for 2009. It presents a comprehensive summary of Earth's climate in 2009 and establishes the last decade as the warmest on record. Reduced extent of Arctic sea ice, glacier volume, and snow cover reflect the effects of rising global temperature.

In this activity, students make a model sea floor sediment core using two types of buttons to represent fossil diatoms. They then compare the numbers of diatom fossils in the sediment at different depths to determine whether the seas were free of ice while the diatoms were alive.

In this activity, students consider Greenland reflectivity changes from 2000 to 2012 and what albedo anomalies may indicate about how the Greenland ice sheet is changing in a case study format.

A detailed Google Earth tour of glacier change over the last 50 years introduces this topic in an engaging way. Students are then asked to select from a group of glaciers and create their own Google Earth tour exploring key characteristics and visible changes in that glacier.

This video describes the role that dendrochronology plays in understanding climate change, especially changes to high elevation environments at an upper tree line. Dendrochronologists from the Big Sky Institute sample living and dead trees, describe how correlations between trees are made, and explain how tree cores record climate changes.

In this 6-part activity, students learn about climate change during the Cenozoic and the abrupt changes at the Cretaceous/Paleogene boundary (65.5 million years ago), the Eocene/Oligocene boundary (33.9 million years ago), and the Paleocene/Eocene boundary (55.8 million years ago).

This video describes what black carbon is, where is comes from, and how it contributes to sea ice melt and global warming.

Pages