This video describes the role that dendrochronology plays in understanding climate change, especially changes to high elevation environments at an upper tree line. Dendrochronologists from the Big Sky Institute sample living and dead trees, describe how correlations between trees are made, and explain how tree cores record climate changes.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

In this activity, students review techniques used by scientists as they analyze a 50-year temperature time series dataset. The exercise helps students understand that data typically has considerable variability from year to year and to predict trends, one needs to consider long-term data.

This video describes how field research -- in this case, making water measurements in rugged mountain locations -- helps us to understand the complex relationships among changing climate, populations, and water usage.

This interactive visualization describes how climatologists obtain and interpret evidence from the Greenland Ice Sheet in an effort to piece together a picture of Earth's distant climate history. Resource describes how glaciers form and how they can be used to collect ancient atmospheric data. The issues analyzed in the data collection are particularly good in showing how science is done in the field.

This video features interviews with native people living on atoll islands in Micronesia, so viewers are able to understand the real, current threats that these people are facing due to climate change.

This short video examines the recent melting ice shelves in the Antarctica Peninsula; the potential collapse of West Antarctic ice shelf; and how global sea levels, coastal cities, and beaches would be affected.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

In this activity, students examine pictures of pollen grains representing several species that show the structural differences that scientists use for identification. Students analyze model soil samples with material mixed in to represent pollen grains. They then determine the type and amount of 'pollen' in the samples and, using information provided to them, determine the type of vegetation and age of their samples. Finally, they make some conclusions about the likely climate at the time the pollen was shed.

This video describes why tropical ice cores are important and provide different information than polar ice cores, why getting them now is important (they are disappearing), and how scientists get them. The work of glaciologist Lonnie Thompson is featured, with a focus on his work collecting cores of ice from high mountain glaciers that contain significant data about past climate change.