This lesson explores El Nino by looking at sea surface temperature, sea surface height, and wind vectors in order to seek out any correlations there may be among these three variables, using the My NASA Data Live Access Server. The lesson guides the students through data representing the strong El Nino from 1997 to 1998. In this way, students will model the methods of researchers who bring their expertise to study integrated science questions.

This short video discusses where carbon dioxide, the gas that is mainly responsible for warming up our planet and changing the climate, comes from. It discusses how the rise in atmospheric carbon dioxide comes directly from the burning of fossil fuels and indirectly from the human need for energy.

This NASA animation on land cover change zooms into Rondonia, Brazil. It starts with a Landsat satellite image taken in 1975 and dissolves into a second image of the same region taken in 2009 indicating that there has been a significant amount of land use change.

This activity with a lab report instructs students to solve and plot 160,000 years' worth of ice core data from the Vostok ice core using Excel or similar spreadsheets to analyze data. Students learn about ice cores and what they can tell us about past atmospheric conditions and the past atmospheric concentrations of CO2 and CH4.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

This video describes the complex connections between land (the lithosphere) and other parts of Earth's climate system. Animations from NOAA show how distance from the equator affects average temperature in the Northern and Southern Hemispheres. The video emphasizes five land factors that influence climate: latitude, elevation, topography, surface reflectivity, and land use.

This video describes why tropical ice cores are important and provide different information than polar ice cores, why getting them now is important (they are disappearing), and how scientists get them. The work of glaciologist Lonnie Thompson is featured, with a focus on his work collecting cores of ice from high mountain glaciers that contain significant data about past climate change.

In this activity, students compare carbon dioxide (CO2) data from Mauna Loa Observatory, Barrow (Alaska), and the South Pole over the past 40 years to help them better understand what controls atmospheric carbon dioxide. This activity makes extensive use of Excel.

This short video describes the Hestia project - a software tool and data model that provide visualizations of localized CO2 emissions from residential, commercial, and vehicle levels, as well as day versus night comparisons, in the city of Indianapolis.

This video illustrates how atmospheric particles, or aerosols (such as black carbon, sulfates, dust, fog), can affect the energy balance of Earth regionally, and the implications for surface temperature warming and cooling.


Hide [X]