In this activity, learners observe the effects of the layering of warm and cold water and water that is more or less saline than regular water. They will discover how the effects of salinity and temperature are the root cause of thermohaline layering in the ocean.

This interactive displays how climate variables are changing over time (temperature, CO2, Arctic sea ice, solar flux, etc.) in graphical form. Students can examine data over the last 20 years or archived data.

Students explore how various energy sources can be used to cause a turbine to rotate and then generate electricity with a magnet.

As a segment in PBS's Coping with Climate Change series, Hari Sreenivasan reports on the actions the city of Chicago is taking to mitigate climate change in an urban landscape.

In this activity, students research the relationship between hosts, parasites, and vectors for common vector-borne diseases (VBDs) and evaluate how climate change could affect the spread of disease.

This video highlights research conducted at Woods Hole on how heat absorbed by the ocean and changes of ocean chemistry from human activities could lead to a tipping point for marine life and ecosystems. Includes ice bath experiment that models the tipping point of Arctic sea ice.

In this activity, students use a spreadsheet to calculate the net carbon sequestration in a set of trees; they will utilize an allometric approach based upon parameters measured on the individual trees. They determine the species of trees in the set, measure trunk diameter at a particular height, and use the spreadsheet to calculate carbon content of the tree using forestry research data.

In this activity, students critically evaluate the arguments about climate change raised in a climate contrarian newspaper op-ed. This exercise is intended to strengthen student critical thinking and content knowledge at the end of unit on the climate system.

This Motions of the Sun Lab is an interactive applet from the University of Nebraska-Lincoln Astronomy Applet project.

Video and animations of sea level from NASA's Climate website. Since 1992, NASA and CNES have studied sea surface topography as a proxy for ocean temperatures. NASA Missions TOPEX/Poseidon, Jason 1 and Jason 2 have been useful in predicting major climate, weather, and geologic events including El Nino, La Nina, Hurricane Katrina, and the Indian Ocean Tsunami.

Pages