Student teams design and build solar water heating devices that mimic those used in residences to capture energy in the form of solar radiation and convert it to thermal energy. In this activity, students gain a better understanding of the three different types of heat transfer, each of which plays a role in the solar water heater design. Once the model devices are constructed, students perform efficiency calculations and compare designs.

This video discusses how the populous areas west of the Andes are largely desert and rely on glacial meltwater as an important source of fresh water. Because the Peruvian glaciers high in the Andes are in rapid retreat, scientists are monitoring the steadily shrinking glaciers and the impact of their reduction on local populations.

In this activity, students explore how, in New England, the timing of color change and leaf drop of deciduous trees is changing.

Citizen scientist Anya, an indigenous Siberian girl, witnesses the changes in her community as a result of climate change after working with Woods Hole scientist Max Holmes' research team aboard her father's ship. She gets involved in collecting water samples to learn, and teach her schoolmates about, global warming.

This is an animation from the US Environmental Protection Agency's Students Guide to Global Climate Change, one of a series of web pages and videos about the basics of the greenhouse effect.

This video shows 15 years of data obtained via Polar-orbiting satellites that are able to detect subtle differences in ocean color, allowing scientists to see where there are higher concentrations of phytoplankton - a proxy for the concentration of chlorophyll in the ocean.

This introductory video summarizes the process of generating solar electricity from photovoltaic and concentrating (thermal) solar power technologies.

This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.

This activity introduces students to different forms of energy, energy transformations, energy storage, and the flow of energy through systems. Students learn that most energy can be traced back to nuclear fusion on the sun.

This short activity provides a way to improve understanding of a frequently-published diagram of global carbon pools and fluxes. Students create a scaled 3-D visual of carbon pools and net fluxes between pools.

Pages