This series of activities introduce students to polar oceanography, polar climate and how events that occur in oceans thousands of kilometers away affect them and the mid-latitudes using maps, images, lab experiments and online data tools. Students explore how conditions are changing in the Polar Regions and the possible impacts upon life in the United States and other mid-latitude nations.

This is an interactive website that provides descriptive information and data related to ten key climate indicators. These climate indicators and related resources show global patterns and data that are intuitive and compelling teaching tools.

This NASA animation depicts thermohaline circulation in the ocean and how it relates to salinity and water density. It illustrates the sinking of water in the cold, dense ocean near Iceland and Greenland. The surface of the ocean then fades away and the animation pulls back to show the global thermohaline circulation system.

In this role-playing activity, learners are presented with a scenario in which they will determine whether the Gulf Stream is responsible for keeping Europe warm. They must also address the potential future of the Gulf Stream if polar ice were to continue melting. The students work in small groups to identify the issue, discuss the problem, and develop a problem statement. They are then asked what they need to know to solve the problem.

In this activity, students examine global climate model output and consider the potential impact of global warming on tropical cyclone initiation and evolution. As a follow-up, students read two short articles on the connection between hurricanes and global warming and discuss these articles in context of what they have learned from model output.

In this classroom activity, students access sea surface temperature and wind speed data from a NASA site, plot and compare data, draw conclusions about surface current and sea surface temperature, and link their gained understanding to concerns about global climate change.

This brief, hands-on activity illustrates the different heating capacities of soil and water in order to understand why places near the sea have a more moderate climate than those inland.

This short video from Climate Central explains the technology used to monitor changes in Arctic sea ice. Long-term tracking (since the late 1970's) shows Arctic sea ice has been on a steady decline and this could have significant implications for global temperatures.

This graphic contains ocean heat content (OHC) anomaly trends from 1945 to 2009 for the top 700 meters of the ocean. It is composed of long-term datasets from seven different references. The graphic can be manipulated and downloaded as a picture.

In this activity, students act as water molecules and travel through parts of the water cycle (ocean, atmosphere, clouds, glaciers, snow, rivers, lakes, ground, aquifer), noting on a hydrological cycle diagram the pathway traveled.

Pages

Hide [X]