In this activity students explore recent changes in the Arctic's climate that have been observed and documented by indigenous Arctic residents. Students watch a video, take notes, and create a concept map. Students also examine and graph historical weather data and indigenous data for an Arctic community. Students explain why natives are critical observers.

In this interactive simulation, students can explore global CO2 emissions displayed by different continents/countries and plotted based on the GDP. A map view is also accessible.

This is a multi-faceted activity that offers students a variety of opportunities to learn about permafrost through an important sink and source of greenhouse gas (methane), about which most students living in lower latitudes know little.

This video provides an overview of how computer models work. It explains the process of data assimilation, which is necessary to ensure that models are tied to reality. The video includes a discussion of weather models using the Goddard Earth Observing System (GEOS-5) model and climate models using the MERRA (Modern Era Retrospective Analysis for Research and Applications) technique.

This video features changes in the land, sea, and animals that are being observed by the residents of Sachs Harbour, Northwest Territories, Canada â many of whom hunt, trap, and fishâbecause of their long-standing and intimate connection with their ecosystem. Scientists interview the residents and record their observations in order to deepen our understanding of climate change in the polar region. Background essay and discussion questions are included.

This video explores the work of environmentalist John Hart, a Professor of Environmental Science at U.C. Berkley. In the Rocky Mountains of Colorado, Dr. Hart has established an experimental laboratory in which he has artificially created and maintained a 3-degree increase in surface temperature of a plot of land, and documented the impact on plant species occupying the plot.

This gallery of ten temperature graphs shows global temperatures on different timescales from decades (recently measured temperatures) to centuries (reconstructed) to millions of years (modeled from ice cores).

In this activity, students develop an understanding of the relationship between natural phenomena, weather, and climate change: the study known as phenology. In addition, they learn how cultural events are tied to the timing of seasonal events. Students brainstorm annual natural phenomena that are tied to seasonal weather changes. Next, they receive information regarding the Japanese springtime festival of Hanami, celebrating the appearance of cherry blossoms. Students plot and interpret average bloom date data from over the past 1100 years.

In this hands-on activity, students will learn about dendrochronology (the study of tree rings to understand ecological conditions in the recent past) and come up with conclusions as to what possible climatic conditions might affect tree growth in their region. Students determine the average age of the trees in their schoolyard, investigate any years of poor growth, and draw conclusions about the reasons for those years.

This short video discusses where carbon dioxide, the gas that is mainly responsible for warming up our planet and changing the climate, comes from. It discusses how the rise in atmospheric carbon dioxide comes directly from the burning of fossil fuels and indirectly from the human need for energy.

Pages