This interactive visualization provides a clear, well-documented snapshot of current and projected values of several climate variables for local areas in California. The climate variables include observed and projected temperatures, projected snowpack, areas vulnerable to flooding due to sea level rise, and projected increase in wildfires. The projected values come from expert sources and well-established climate models.

This activity introduces students to different forms of energy, energy transformations, energy storage, and the flow of energy through systems. Students learn that most energy can be traced back to nuclear fusion on the sun.

In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

This video features a short animated sequence that illustrates the difference between young and old carbon released into the atmosphere from the consumption of food (young carbon) and the burning of fossil fuels (old carbon).

Two simple experiments/demonstrations show the role of plants in mitigating the acidification caused when CO2 is dissolved in water.

This activity utilizes labs, online resources, and student ideas to build an understanding of polar climates, how changes in polar oceans can affect coastal climates, and how changes in polar regions affect climates elsewhere on Earth.

This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

This interactive map allows students to experiment with decadal average temperature projections. Overall temperatures are expected to rise throughout the century and this tool demonstrates those projected measurements.

Students examine data from Mauna Loa to learn about CO2 in the atmosphere. The students also examine how atmospheric CO2 changes through the seasonal cycle, by location on Earth, and over about 40 years and more specifically over 15 years. Students graph data in both the Northern and Southern Hemisphere and draw conclusions about hemispherical differences in CO2 release and uptake.

This is a jigsaw activity in which students are assigned to research one step out of five in the geochemical process stages of the organic carbon cycle. Students then teach their step in cross-step groups until everyone understands all five process stages.

Pages