This activity focuses on reconstructing the Paleocene-Eocene Thermal Maximum (PETM) as an example of a relatively abrupt global warming period. Students access Integrated Ocean Drilling Program (IODP) sediment core data with Virtual Ocean software in order to display relevant marine sediments and their biostratigraphy.

In this activity students explore recent changes in the Arctic's climate that have been observed and documented by indigenous Arctic residents. Students watch a video, take notes, and create a concept map. Students also examine and graph historical weather data and indigenous data for an Arctic community. Students explain why natives are critical observers.

In this intermediate Excel activity, students import US Historical Climate Network mean temperature data into Excel from a station of their choice. They are then guided through the activity on how to use Excel for statistical calculations, graphing, and linear trend estimates. The activity assumes some familiarity with Excel and graphing in Excel.

This activity students through the ways scientists monitor changes in Earth's glaciers, ice caps, and ice sheets. Students investigate about glacier locations, glacial movement, and impacts of climate change on glaciers depending on the depth of research. It is linked to 2009 PBS Nova program entitled Extreme Ice.

This video explores the work of environmentalist John Hart, a Professor of Environmental Science at U.C. Berkley. In the Rocky Mountains of Colorado, Dr. Hart has established an experimental laboratory in which he has artificially created and maintained a 3-degree increase in surface temperature of a plot of land, and documented the impact on plant species occupying the plot.

This video is the first of a three-video series from the Sea Change project. It features the field work of scientists from the US and Australia looking for evidence of sea level rise during the Pliocene era when Earth was (on average) about 2 to 3 degrees Celsius hotter than it is today.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2011, and then back in time to 800,000 years before the present.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

This teaching activity is an introduction to how ice cores from the cryosphere are used as indicators and record-keepers of climate change as well as how climate change will affect the cryosphere. Students learn through a guided web exercise how scientists analyze ice cores to learn about past climate conditions, how melting sea and land ice will contribute to sea level rise, and what areas of the world would be at risk if Antarctic and/or Greenland ice sheets were to melt away.

In this activity, students develop an understanding of the relationship between natural phenomena, weather, and climate change: the study known as phenology. In addition, they learn how cultural events are tied to the timing of seasonal events. Students brainstorm annual natural phenomena that are tied to seasonal weather changes. Next, they receive information regarding the Japanese springtime festival of Hanami, celebrating the appearance of cherry blossoms. Students plot and interpret average bloom date data from over the past 1100 years.

Pages