In this short activity, students or groups are tasked to make concept sketches that track the source of electrical power as far back as they can conceive. The concept sketches reveal students' prior conceptions of the power grid and energy mix, and lead naturally into a lesson or discussion about energy resources and power production.

In this activity, students examine images of alpine glaciers to develop an understanding of how glaciers respond to climate change. They record, discuss, and interpret their observations. They consider explanations for changes in the size and position of glaciers from around the world. They develop an understanding that the melting (retreat) of glaciers is occurring simultaneously on different continents around the world, and, thus, they represent evidence of global climate change.

Students go through the design process and the scientific method to test the effect of blade design on power output. There is an optional extension to use the data to create an optimal set of wind turbine blades.

In this activity, students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). While becoming more familiar with the physical processes that made Earth's early climate so different from that of today, they also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

Students conduct an energy audit to determine how much carbon dioxide their family is releasing into the atmosphere and then make recommendations for minimizing their family's carbon footprint. Students are specifically asked to understand the units of power and energy to determine the cost of running various household appliances. Finding the amount of carbon dioxide emitted for different types of energy and determining ways of reducing carbon dioxide output is the outcome of the lesson.

Two short, narrated animations about carbon dioxide and Earth's temperature are presented on this webpage. The first animation shows the rise in atmospheric CO2 levels, human carbon emissions, and global temperature rise of the past 1,000 years; the second shows changes in the level of CO2 from 800,000 years ago to the present.

This video features the Prairie Heating and CO2 Enrichment Experiment near Cheyenne WY, where scientists expose mixed-grass prairie to higher temperatures and CO2 concentrations to study impacts on the prairie for late in this century.

In this activity, students learn about the tools and methods paleoclimatologists use to reconstruct past climates. In constructing sediment cores themselves, students will achieve a very good understanding of the sedimentological interpretation of past climates that scientists can draw from cores.

This static visualization shows that the global carbon cycle is determined by the interactions of climate, the environment, and Earth's living systems at many levels, from molecular to global.

This short video describes the Hestia project - a software tool and data model that provide visualizations of localized CO2 emissions from residential, commercial, and vehicle levels, as well as day versus night comparisons, in the city of Indianapolis.