This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

This figure, the famous Keeling Curve, shows the history of atmospheric carbon dioxide concentrations as directly measured at Mauna Loa, Hawaii. This curve is an essential piece of evidence that shows the increased greenhouse gases that cause recent increases in global temperatures.

This click-through animation visualizes the ice-albedo feedback, soot's effect on sea ice and glacier melt, and ice melt's effect on land and sea.

This short video shows an example of melting alpine glaciers in the Austrian Alps (Goldberg Glacier). Disappearing alpine glaciers have social and environmental impacts, including the decline of fresh water supplies and contributing to sea level rise.

This video profiles the Arctic Inuit community of Sachs Harbour and its collaboration with scientists studying climate change. Changes in the land, sea, and animals are readily apparent to the residents of Sachs Harbourâmany of whom hunt, trap, and fishâbecause of their long-standing and intimate connection with their ecosystem. Scientists from a climate change study project interview the residents and record their observations. The scientists can use these firsthand accounts along with their own collected data to deepen their understanding of climate change in the polar region.

This PBS video focuses on sea level rise in Norfolk, Virginia and how the residents are managing the logistical, financial and political implications. Science journalists who have been studying Norfolk's rising sea level problems are interviewed, as well as local residents who are being impacted.

This video illustrates conditions under which two infectious diseases - cholera and dengue fever - flourish, and how climate change is likely to exacerbate those conditions.

This video describes the impact of extreme heat on Philadelphia in the summer of 2011 and how the city is adapting to new expectations about its weather. It uses this example to introduce the new national climate normals, released by NOAA's National Climatic Data Center (NCDC) that summer.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2011, and then back in time to 800,000 years before the present.

This narrated animation displays three separate graphs of carbon emissions by humans, atmospheric concentrations of CO2, and average global temperature as it has changed over the last 1000 years. The final slide overlays the three graphs to show how they all correspond.

Pages