In this activity learners work in pairs or small groups to apply knowledge of energy-wise habits to evaluate energy use in their school and make recommendations for improved efficiency. Students create and use an energy audit tool to collect data and present recommendations to their class. Further communication at the school and district level is encouraged.

This teaching activity addresses regional variability as predicted in climate change models for the next century. Using real climatological data from climate models, students will obtain annual predictions for minimum temperature, maximum temperature, precipitation, and solar radiation for Minnesota and California to explore this regional variability. Students import the data into a spreadsheet application and analyze it to interpret regional differences. Finally, students download data for their state and compare them with other states to answer a series of questions about regional differences in climate change.

In this activity, students distinguish between direct and indirectly transmitted diseases and participate in a group game to simulate the spread of vector-borne diseases. They then research a particular pathogenic disease to learn how global warming and biodiversity loss can affect disease transmission.

Students perform a lab to explore how the color of materials at the Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark colored materials become hotter.

In this hands-on activity, students will learn about dendrochronology (the study of tree rings to understand ecological conditions in the recent past) and come up with conclusions as to what possible climatic conditions might affect tree growth in their region. Students determine the average age of the trees in their schoolyard, investigate any years of poor growth, and draw conclusions about the reasons for those years.

In this activity, students create graphs of real temperature data to analyze climate trends by analyzing the global temperature record from 1867 to the present. Long-term trends and shorter-term fluctuations are both evaluated. The data is examined for evidence of the impact of natural and anthropogenic climate forcing mechanisms on the global surface temperature variability. Students are prompted to determine the difficulties scientists face in using this data to make climate predictions.

This activity offers an introduction to working with Geographic Information Systems (GIS) by using field data on the Urban Heat Island Effect that was collected by students. The field data is entered in the GIS, displayed in a map, and analyzed.

This activity is part of the Antarctica's Climate Secrets flexhibit. Students learn about and create models of glaciers and ice sheets, ice shelves, icebergs and sea ice.

This interactive activity, in applet form, guides students through the motion of the sun and how they relate to seasons.

In this exercise learners use statistics (T-test using Excel) to analyze an authentic dataset from Lake Mendota in Madison, WI that spans the last 150 years to explore ice on/ice off dates. In addition, students are asked to investigate the IPCC Likelihoodscale and apply it to their statistical results.

Pages