This is a graph of marine air temperature anomalies over the past 150 years. Five different marine air temperature anomaly datasets from different sources are compared on the one graph.

This click-through animation visualizes the ice-albedo feedback, soot's effect on sea ice and glacier melt, and ice melt's effect on land and sea.

One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

This is a laboratory activity in which students will compare the amount of carbon dioxide in four different sources of gas and determine the carbon dioxide contribution from automobiles. They test ambient air, human exhalation, automobile exhaust, and nearly pure carbon dioxide from a vinegar/baking soda mixture.

This animation illustrates how heat energy from deep in Earth can be utilized to generate electricity at a large scale.

This NASA animation depicts thermohaline circulation in the ocean and how it relates to salinity and water density. It illustrates the sinking of water in the cold, dense ocean near Iceland and Greenland. The surface of the ocean then fades away and the animation pulls back to show the global thermohaline circulation system.

This activity engages students in the analysis of climate data to first find areas in the southern United States that are now close to having conditions in which the malaria parasite and its mosquito hosts thrive and then attempt to forecast when areas might become climatically suitable.

This video is one of a series from the Switch Energy project. It presents pros and cons of hydraulic fracturing, or fracking. In this video, new fracking technologies are presented as more economical and environmentally safe.

This video provides an overview of the research of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) on converting biomass to liquid fuels.

This activity engages learners to investigate the impact of Earth's tilt and the angle of solar insolation as the reason for seasons by doing a series of hands-on activities that include scale models. Students plot the path of the Sun's apparent movement across the sky on two days separated by three months of time.

Pages