This 15-panel interactive from NOVA Online describes some of the factors (e.g., Earth's rotation and the sun's uneven heating of Earth's surface) contributing to the formation of the high-speed eastward flows of the jet streams, found near the top of the troposphere. These jet streams play a major role in guiding weather systems.

In this activity learners investigate the link between ocean temperatures and hurricane intensity, analyze instrumental and historical data, and explore possible future changes.

This video from the U.S. National Academies summarizes the energy challenges the United States faces, the technological challenges, and the need for behavior and policy changes required to meet the challenge.

This video provides a good overview of ice-albedo feedback. Albedo-Climate feedback is a positive feedback that builds student understanding of climate change.

Sankey (or Spaghetti) diagrams parse out the energy flow by state, based on 2008 data from the Dept. of Energy. These diagrams can help bring a local perspective to energy consumption. The estimates include rejected or lost energy but don't necessarily include losses at the ultimate user end that are due to lack of insulation.

A detailed Google Earth tour of glacier change over the last 50 years is given in class as an introduction. Students are then asked to select from a group of glaciers and create their own Google Earth tour exploring key characteristics and evident changes in that glacier.

This interactive provides two scenarios for students to look at issues related to energy and climate change: from the perspective of either a family, or a monarch.

This activity students through the ways scientists monitor changes in Earth's glaciers, ice caps, and ice sheets. Students investigate about glacier locations, glacial movement, and impacts of climate change on glaciers depending on the depth of research. It is linked to 2009 PBS Nova program entitled Extreme Ice.

This video is one of a series of videos from the Switch Energy project. It describes three types of geothermal sources -- rare ones in which high temperatures are naturally concentrated near the surface, deep wells that require fracturing the rock and then circulating water to bring heat to the surface, and low temperature sources that use constant temperatures just below the surface to heat or cool a building. The latter two are more widely available but cost-prohibitive today.

This animation illustrates how the hardiness zones for plants have changed between 1990 and 2006 based on an extensive updating of U.S. Hardiness Zones using data from 5,000 National Climatic Data Center cooperative stations across the continental United States.