This graph, based on key ice core data sets and recent monitoring programs, shows the variations in concentration of carbon dioxide (CO2) in the atmosphere during the last 400,000 years.

This video segment highlights research that supports the idea that warmer oceans generate and sustain more intense hurricanes.

In this activity, students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). While becoming more familiar with the physical processes that made Earth's early climate so different from that of today, they also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

The activity follows a progression that examines the CO2 content of various gases, explores the changes in the atmospheric levels of CO2 from 1958 to 2000 from the Mauna Loa Keeling curve, and the relationship between CO2 and temperature over the past 160,000 years. This provides a foundation for examining individuals' input of CO2 to the atmosphere and how to reduce it.

This interactive map allows the user to explore projected alterations of land surfaces in coastal communities, based on different scenarios of sea level changes over time.

This activity from NOAA Earth System Research Laboratory introduces students to the current scientific understanding of the greenhouse effect and the carbon cycle. The activity leads them through several interactive tasks investigating recent trends in atmospheric carbon dioxide. Students analyze scientific data and use scientific reasoning to determine the causes responsible for these recent trends. By studying carbon cycle science in a visual and interactive manner, the activity provides students with a conceptual framework with which to address the challenges of a changing climate.

This activity introduces students to the process of converting sunlight into electricity through the use of photovoltaics (solar cells). Students complete a reading passage with questions and an inquiry lab using small photovoltaic cells.

This is the first of nine lessons in the Visualizing and Understanding the Science of Climate Change website. This lesson is an introduction to Earth's climate and covers key principles regarding Earth's unique climate, atmosphere, and regional and temporal climate differences.

This as a 2-part activity in which students study the properties of CO2 in a lab and then use Web resources to research different types of carbon capture. A video lecture accompanies the activity.

This visualization shows in five steps how ice cores provide a measure of the temperature in the past.

Pages