This homework problem introduces students to Marcellus shale natural gas and how an unconventional reservoir rock can become an attractive hydrocarbon target. It is designed to expand students' understanding of hydrocarbon resources by introducing an unconventional natural gas play. Students explore the technological factors that make conventional source rocks attractive reservoir rocks and how this advance impacts both U.S. energy supply and the environment.

This activity focuses on applying analytic tools such as pie charts and bar graphs to gain a better understanding of practical energy use issues. Also provides experience with how different types of data collected affect the outcome of statistical visualization tools.

This activity engages students in learning about ways to become energy efficient consumers. Students examine how different countries and regions around the world use energy over time, as reflected in night light levels. They then track their own energy use, identify ways to reduce their individual energy consumption, and explore how community choices impact the carbon footprint.

This video features changes in the land, sea, and animals that are being observed by the residents of Sachs Harbour, Northwest Territories, Canada â many of whom hunt, trap, and fishâbecause of their long-standing and intimate connection with their ecosystem. Scientists interview the residents and record their observations in order to deepen our understanding of climate change in the polar region. Background essay and discussion questions are included.

In this interactive, students can investigate a typical hydrogen fuel cell prototype car from its fuel cell stacks to its ultracapacitor, a kind of supplementary power source.

The limited-production vehicle seen in this feature is a Honda 2005 FCX, which is typical of the kinds of hydrogen fuel cell cars that some major automakers are now researching and developing.

This applet is an ocean acidification grapher that allows user to plot changes in atmospheric C02 against ocean pH, from 1988 to 2009, in the central North Pacific.

This is a team-based activity that teaches students about the scale of the greenhouse gas problem and the technologies that already exist which can dramatically reduce carbon emissions. Students select carbon-cutting strategies to construct a carbon mitigation profile, filling in the wedges of a climate stabilization triangle.

In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.

This video is part of the Climate Science in a Nutshell series. This short, animated video looks at evidence of a rapidly warming planet. It discusses how air bubbles in ice cores can be used to estimate Earth's average air temperature for thousands of years and how direct measurements document air temperatures from 1880.

This interactive/applet allows the user to explore the potential increase in carbon emissions over the next 50 years, subject to modifications made by the user in various technologies that impact carbon output. Part of the Visualizing and Understanding the Science of Climate Change module.