This site provides a useful set of graphical representations of mean temperature change in different land/ocean surfaces over the past 120+ years.

This tool provides a summary of daily records broken in several weather parameters (temperature, precipitation, snow fall, snow depth), over various time intervals, in the US and globally.

This NOAA visualization on YouTube shows the seasonal variations in sea surface temperatures and ice cover from 1985 to 2007. The visualization is based on data collected by NOAA polar-orbiting satellites. El NiÃo and La NiÃa are easily identified, as are the trends in decreasing polar sea ice.

This National Geographic video explains the origins of the El NiÃo Southern Oscillation using animations and shows the impacts on humans, wildlife and habitat, particularly in the United States.

This video shows 15 years of data obtained via Polar-orbiting satellites that are able to detect subtle differences in ocean color, allowing scientists to see where there are higher concentrations of phytoplankton - a proxy for the concentration of chlorophyll in the ocean.

This short video illustrates the phenomena of El NiÃo and La NiÃa: their relationships to tradewinds and surface water temperatures, and their effects on precipitation in North America.

This video reviews how increasing temperatures in the Arctic are affecting the path of the jet stream, the severity of storms, and the length of individual weather events (rain, storms, drought).

This video provides a good introduction to the field of attribution science. Beginning with an introduction to weather and climate, it describes how severe weather might be linked to climate change and the science behind attribution studies. It gives a good explanation behind how scientists use climate models to study whether severe weather events were influenced by climate change. It also discusses the question, "does climate change cause extreme weather?" and provides an introduction to the concepts of probability, causation, and correlation in regards to attribution science (how much climate change influenced an event verses normal variations in weather).