This short animated video provides a general overview of the atmosphere, carbon dioxide, and the greenhouse effect.

This image depicts a representative subset of the atmospheric processes related to aerosol lifecycles, cloud lifecycles, and aerosol-cloud-precipitation interactions that must be understood to improve future climate predictions.

This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance, and greenhouse gases on the Earth System.

This high-resolution narrated video shows levels and movements of CO2 globally through the course of a year.

Two short, narrated animations about carbon dioxide and Earth's temperature are presented on this webpage. The first animation shows the rise in atmospheric CO2 levels, human carbon emissions, and global temperature rise of the past 1,000 years; the second shows changes in the level of CO2 from 800,000 years ago to the present.

This visualization shows the molecular interaction of infrared radiation with various gases in the atmosphere. Focus is on the interaction with C02 molecules and resultant warming of the troposphere.

This visualization is an animation showing the distribution of black carbon and sulfate aerosols in the Earth's atmosphere from 01/31/2007 to 02/04/2007 and clearly shows larger amounts of aerosols and black carbon in the atmosphere above heavily populated areas.

C-Learn is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This video illustrates how atmospheric particles, or aerosols (such as black carbon, sulfates, dust, fog), can affect the energy balance of Earth regionally, and the implications for surface temperature warming and cooling.

Pages