This short animated video provides a general overview of the atmosphere, carbon dioxide, and the greenhouse effect.

This short animation helps demonstrate the difference between climate and weather by using the analogy of a leashed dog walking with a man.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

This video illustrates how atmospheric particles, or aerosols (such as black carbon, sulfates, dust, fog), can affect the energy balance of Earth regionally, and the implications for surface temperature warming and cooling.

This is an animation from the US Environmental Protection Agency's Students Guide to Global Climate Change, one of a series of web pages and videos about the basics of the greenhouse effect.

A video from the Extreme Ice Survey in which Dr. Tad Pfeffer and photographer Jim Balog discuss the dynamics of the Columbia glacier's retreat in recent years through this time-lapse movie. Key point: glacier size is being reduced not just by glacial melting but due to a shift in glacial dynamics brought on by climate change.

This visualization shows the molecular interaction of infrared radiation with various gases in the atmosphere. Focus is on the interaction with C02 molecules and resultant warming of the troposphere.

This video describes how the normal thousands-of-years-long balance of new ice creation and melting due to ocean currents has been disrupted recently by warmer ocean currents. As a result, glacier tongues that overhang the interface between ice and ocean are breaking off and falling into the ocean.

This interactive follows carbon as it moves through various components of the carbon cycle.

This video segment uses data-based visual NOAA representations to trace the path of surface ocean currents around the globe and explore their role in creating climate zones. Ocean surface currents have a major impact on regional climate around the world, bringing coastal fog to San Francisco and comfortable temperatures to the British Isles.

Pages