This Flash-based simulation explores the relationship between carbon emissions and atmospheric carbon dioxide using two main displays: (1) graphs that show the level of human-generated CO2 emissions, CO2 removals, and the level of CO2 in the atmosphere, and (2) a bathtub animation that shows the same information as the graphs. The bathtub simulation illustrates the challenges of reducing greenhouse gas concentrations in the atmosphere.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

This video considers the current estimates of sea level rise as possibly too conservative and discusses more recent data on ice melt rates coming from Antarctica and Greenland, showing rates of melt at up to 5 times as rapid. Scientists discuss what levels and rates of sea level rise have occurred in the past, including the Pliocene, which demonstrated 1m rise every 20 years.

This video segment explores whether, in principle, renewable energy resources could meet today's global energy needs of about 15.7 terawatts.

A video that discusses the perspectives and insights necessary to report out about climate change. The video can be used to demonstrate how different perspectives impact different stakeholders and different levels, and that there is a need to have a clear, coordinated national response.

This flow chart shows the sources and activities across the U.S. economy that produce greenhouse gas emissions.

This interactive displays how climate variables are changing over time (temperature, CO2, Arctic sea ice, sun's energy, sea level, etc.) in graphical form. Students can easily examine over 50+ years of archived data.

This video features the Prairie Heating and CO2 Enrichment Experiment near Cheyenne WY, where scientists expose mixed-grass prairie to higher temperatures and CO2 concentrations to study impacts on the prairie for late in this century.

This static graph of changes in CO2 concentrations goes back 400,000 years, showing the dramatic spike in recent years.

This video shows 15 years of data obtained via Polar-orbiting satellites that are able to detect subtle differences in ocean color, allowing scientists to see where there are higher concentrations of phytoplankton - a proxy for the concentration of chlorophyll in the ocean.

Pages