This teaching activity is an introduction to how ice cores from the cryosphere are used as indicators and record-keepers of climate change as well as how climate change will affect the cryosphere.

In this activity, students research changes to the environment in the Arctic/Bering Sea over time using oral and photographic histories. Developed for Alaska Native students, this activity can be customized for other regions.

In this activity, students calculate temperatures during a time in the geologic record when rapid warming occurred using a well known method called 'leaf-margin analysis.' Students determine the percentage of the species that have leaves with smooth edges, as opposed to toothed, or jagged, edges. Facsimiles of fossil leaves from two collection sites are examined, categorized, and the data is plugged into an equation to provide an estimate of paleotemperature for two sites in the Bighorn Basin. It also introduces students to a Smithsonian scientist who worked on the excavation sites and did the analysis.

In this activity, students learn about the urban heat island effect by investigating which areas of their schoolyard have higher temperatures - trees, grass, asphalt, and other materials. Based on their results, they hypothesize how concentrations of surfaces that absorb heat might affect the temperature in cities - the urban heat island effect. Then they analyze data about the history of Los Angeles heat waves and look for patterns in the Los Angeles climate data and explore patterns.

This lesson has students measure, track, and compare rainfall amounts at their home, at their school, and local area over a period of time by constructing their own rain gauges. Instructor plots their collected data on a community map, and students graph and compare data between different locations.

In this activity, students estimate the drop in sea level during glacial maxima, when ice and snow in high latitudes and altitudes resulted in lower sea levels. Students estimate the surface area of the world's oceans, use ice volume data to approximate how much sea levels dropped, and determine the sea-level rise that would occur if the remaining ice melted.

In this activity, students use authentic Arctic climate data to unravel some causes and effects related to the seasonal melting of the snowpack and to further understand albedo.

This activity is a research project in which students explore and synthesize key paleoceanographic evidence for the Paleocene-Eocene Thermal Maximum (PETM) as found in marine sediment cores collected and analyzed during Ocean Drilling Program Leg 208 (Walvis Ridge).

In this activity, students conduct a short hands-on demonstration that simulates ocean acidification resulting from excess atmospheric carbon dioxide and discuss potential implications of increases in ocean temperatures and acidification due to climate change.

In this activity students work with data to analyze local and global temperature anomaly data to look for warming trends. The activity focuses on the Great Lakes area.

Pages