In this activity, students learn about the scientific evidence supporting climate change, use this information to evaluate and improve conclusions some people might draw about climate change, and participate in a role-play to negotiate solutions to climate change.

This activity has students examine the misconception that there is no scientific consensus on climate change. Students explore temperature data and report their conclusions to the class. Then students examine techniques of science denial and examine a claim about scientific consensus.

Students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

In this Webquest activity, students assume roles of scientist, business leader, or policy maker. The students then collaborate as part of a climate action team and learn how society and the environment might be impacted by global warming. They explore the decision making process regarding issues of climate change, energy use, and available policy options. Student teams investigate how and why climate is changing and how humans may have contributed to these changes. Upon completion of their individual tasks, student teams present their findings and make recommendations that address the situation.

Students focus on the three interconnected choices global society faces as Earth's climate continues to changeâsuffer, adapt, and mitigateâto analyze and predict current and future impacts to Earth's systems. Using videos excerpted from NOVA: Decoding the Weather Machine, students explore ways that adaptation and mitigation strategies can work at various levels to minimize suffering and then develop an evidence-based action plan for their local community.

Through learning activities, students learn how weather over a long period of time describes climate, explore how sea level rise can affect coastal communities and environments, and describe how humans are contributing to climate change and how we can take action to solve this problem.

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.