In this activity, students explore past examples of climate variability in three locations: the Peruvian and Bolivian Andes, Central America, and coastal Greenland, and consider differences between climate variability and climate change.

This is a multi-step activity that helps students measure, investigate, and understand the increase in atmospheric CO2 and the utility of carbon offsets. It also enables students to understand that carbon offsets, through reforestation, are not sufficient to balance increases in atmospheric C02 concentration.

In this activity, students use a spreadsheet to calculate the net carbon sequestration in a set of trees; they will utilize an allometric approach based upon parameters measured on the individual trees. They determine the species of trees in the set, measure trunk diameter at a particular height, and use the spreadsheet to calculate carbon content of the tree using forestry research data.

This is a laboratory activity in which students will compare the amount of carbon dioxide in four different sources of gas and determine the carbon dioxide contribution from automobiles. They test ambient air, human exhalation, automobile exhaust, and nearly pure carbon dioxide from a vinegar/baking soda mixture.

An activity focusing on black carbon. This activity explores the impacts of the use of black carbon generating wood, dung, and charcoal for fuel in developing countries.

This activity allows students to examine graphs of sea level rise data as well as global temperature data. They calculate amounts and rates of sea level rise for various time periods and answer questions discussing the data. They then compare the sea level rise trends to those in a graph of temperature data.

This activity engages learners in exploring the impact of climate change on arctic sea ice in the Bering Sea. They graph and analyze sea ice extent data, conduct a lab on thermal expansion of water, and then observe how a scientist collects long-term data on a bird population.

Students use long term sea-level rise data set to create models and compare short-term trends to long-term trends. They then determine whether sea-level rise is occurring based on the data.

This lab exercise is designed to provide a basic understanding of a real-world scientific investigation. Learners are introduced to the concept of tropospheric ozone as an air pollutant due to human activities and burning of fossil fuels. Students analyze and visualize data to investigate this air pollution and climate change problem, determine the season in which it commonly occurs, and communicate the results.

This unit allows students to investigate past changes in Earth's climate. Students first explore relationships in climate data such as temperature, solar radiation, carbon dioxide, and biodiversity. They then investigate solar radiation in more depth to learn about changes over time such as seasonal shifts. Students then learn about mechanisms for exploring past changes in Earth's climate such as ice cores, tree rings, fossil records, etc. Finally, students tie all these together by considering the feedbacks throughout the Earth system and reviewing an article on a past mass extinction event.

Pages