In this activity, students research the relationship between hosts, parasites, and vectors for common vector-borne diseases (VBDs) and evaluate how climate change could affect the spread of disease.

The activity follows a progression that examines the CO2 content of various gases, explores the changes in the atmospheric levels of CO2 from 1958 to 2000 from the Mauna Loa Keeling curve, and the relationship between CO2 and temperature over the past 160,000 years. This provides a foundation for examining individuals' input of CO2 to the atmosphere and how to reduce it.

In this lab activity, students use brine shrimp as a proxy for krill to study how environmental factors impact behavioral responses of krill in the unique environment of Antarctica.

This simulation provides scenarios for exploring the principles of climate dynamics from a multi-disciplinary perspective. Interconnections among climate issues, public stakeholders, and the governance spheres are investigated through creative simulations designed to help students understand international climate change negotiations.

This activity from NOAA Ocean Service is about using aerial photographs to assess the impact of extreme weather events such as Hurricane Katrina. The activity features aerial views of Biloxi, MS post-Katrina and enables students to see evidence of the power of extreme weather on the environment.

This lesson is comprised of three activities (three class periods). Students use web-based animations to explore the impacts of ice melt and changes to sea level. Students are introduced to topographic maps by doing a hands-on activity to model the contours of an island. Then students examine the relationship between topography and sea level rise by mapping changing shorelines using a topographic map.

This 3-part interactive and virtual lab activity examines the life cycle of the sea urchin, and how the increasing acidity of the ocean affects their larval development.

This activity in a case study format explores ice loss from the Greenland ice sheet by way of outlet glaciers that flow into the ocean. Students do basic calculations and learn about data trends, rates of change, uncertainty, and predictions.

In this activity students use NASA satellite data to study changes in temperature and snow-ice coverage in the South Beaufort Sea, Alaska. They will then correlate the data with USGS ground tracking of polar bears and relate their findings to global change, sea ice changes, and polar bear migration and survival.

Students run a simplified computer model to explore how climate conditions can affect caribou, the most abundant grazing animal in the Arctic.

Pages