In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

This short activity provides a way to improve understanding of a frequently-published diagram of global carbon pools and fluxes. Students create a scaled 3-D visual of carbon reservoirs and the movement of carbon between reservoirs.

In this activity, students explore the way that human activities have changed the way that carbon is distributed in Earth's atmosphere, lithosphere, biosphere and hydrosphere.

In this short, hands-on activity, students build simple molecular models of 4 atmospheric gases (O2, N2, C02, and methane), compare their resonant frequencies, and make the connection between resonant frequency and the gas's ability to absorb infrared radiation.

This classroom demonstration illustrates the amount of water stored in various parts of the Earth system in a straightforward manner. Students estimate the proportions of water in the oceans, icecaps and glaciers, groundwater, freshwater lakes, inland seas, soil moisture, atmosphere, and rivers. Then they fill beakers with the actual proportion and discuss what elements of the activity were surprising to them. Information on flash floods and flood preparedness and safety are included.

This is a multi-faceted activity that offers students a variety of opportunities to learn about permafrost and the role of methane in thawing permafrost.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

In this jigsaw activity, students explore meteorological data collected from Eureka, Canada to try to decide when would be the best time for an Arctic visit.

This activity involves plotting and comparing monthly data on atmospheric C02 concentrations over two years, as recorded in Mauna Loa and the South Pole, and postulating reasons for differences in their seasonal patterns. Longer-term data is then examined for both sites to see if seasonal variations from one site to the other carry over into longer term trends.

In this activity, students explore factors that have caused the rise in global temperature over the last century. Educators have the opportunity to assess how modeling activities (the game), analogies (the cake), and mathematical models (graphs) develop and change student mental models.