In this activity, students will use oxygen isotope values of two species of modern coral to reconstruct ambient water temperature over a four-year period. They use Microsoft Excel, or similar application, to create a spreadsheet of temperature values calculated from the isotope values of the corals by means of an algebraic equation. Students then use correlation and regression techniques to determine whether isotope records can be considered to be good proxies for records of past temperatures.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

In this lab activity, students use brine shrimp as a proxy for krill to study how environmental factors impact behavioral responses of krill in the unique environment of Antarctica.

This activity addresses naturally occurring climate change involving ENSO (El-NiÃo Southern Oscillation). In this activity, students play the role of a policy maker in Peru. First, they determine what sort of ENSO variation is occurring. Then, they must decide how to allocate Peru's resources to manage for possible weather-related problems.

In this activity, students calculate electricity use by state and determine, using Google Earth, how much land would be required to replace all sources of electricity with solar panels.

This activity covers the role that the oceans may play in climate change and how climate change may affect the oceans. It is lesson 8 in a nine-lesson module Visualizing and Understanding the Science of Climate Change.

This activity introduces wind energy concepts through a reading passage and by answering assessment questions. The main section of the activity involves constructing and testing a windmill to observe how design and position affect the electrical energy produced.

Students investigate how much greenhouse gas (carbon dioxide and methane) their family releases into the atmosphere each year and relate it to climate change. To address this, students use the Environmental Protection Agency Personal Emissions Calculator to estimate their family's greenhouse gas emissions and to think about how their family could reduce those emissions.

In this activity, students examine pictures of pollen grains representing several species that show the structural differences that scientists use for identification. Students analyze model soil samples with material mixed in to represent pollen grains. They then determine the type and amount of 'pollen' in the samples and, using information provided to them, determine the type of vegetation and age of their samples. Finally, they make some conclusions about the likely climate at the time the pollen was shed.

In this activity, students explore energy production and consumption by contrasting regional energy production in five different US regions.

Pages