An activity focusing on black carbon. This activity explores the impacts of the use of black carbon generating wood, dung, and charcoal for fuel in developing countries.

In this activity, students engage in a simulation of the international negotiation process in order to convey how the international community is responding to climate change. Participants learn firsthand about the interests of different countries and the range of policy responses to mitigate future climate change.

This is Unit 1 of a larger module and centers on the fundamental concepts of major storms and community resilience. In this unit, students acquire a vocabulary related to storm systems and risk, engage in practical exercises on event probability and frequency, and complete written activities and oral presentations that reinforce these concepts, using two case studies as examples.

This sequence of activities using real-world data to explain the importance of coral reefs and the relationship of coral reef health to the surrounding environment. Unit includes five activities.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

In this activity, students compare countries and nation states with high- and low-energy consumption rates within a specific region of the world. Students are encouraged to draw linkages between a country's energy culture and its position in multilateral climate negotiations.

In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

Climate has varied in the past, but today's climate change rate is much more drastic due to human activity. Students explore past climate cycle graphs and compare the cycles with the current rate of change.

Students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

The purpose of this activity is to identify global patterns and connections in environmental data contained in the GLOBE Earth Systems Poster, to connect observations made within the Earth Systems Poster to data and information at the National Snow and Ice Data Center, and to understand the connections between solar energy and changes at the poles, including feedback related to albedo.