In this activity, students examine the effects of hurricanes on sea surface temperature using NASA data. They examine authentic sea surface temperature data to explore how hurricanes extract heat energy from the ocean surface.

This activity involves plotting and comparing monthly data on atmospheric C02 concentrations over two years, as recorded in Mauna Loa and the South Pole, and postulating reasons for differences in their seasonal patterns. Longer-term data is then examined for both sites to see if seasonal variations from one site to the other carry over into longer term trends.

This unit allows students to investigate past changes in Earth's climate. Students first explore relationships in climate data such as temperature, solar radiation, carbon dioxide, and biodiversity. They then investigate solar radiation in more depth to learn about changes over time such as seasonal shifts. Students then learn about mechanisms for exploring past changes in Earth's climate such as ice cores, tree rings, fossil records, etc. Finally, students tie all these together by considering the feedbacks throughout the Earth system and reviewing an article on a past mass extinction event.

This activity focuses on reconstructing the Paleocene-Eocene Thermal Maximum (PETM) as an example of a relatively abrupt global warming period. Students access Integrated Ocean Drilling Program (IODP) sediment core data with Virtual Ocean software in order to display relevant marine sediments and their biostratigraphy.

This activity introduces students to stratigraphic correlation and the dating of geologic materials, using coastal sediment cores that preserve a record of past hurricane activity.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

This activity has students examine the misconception that there is no scientific consensus on climate change. Students explore temperature data and report their conclusions to the class. Then students examine techniques of science denial and examine a claim about scientific consensus.

In this activity, students are guided through the process of locating and graphing web-based environmental data that has been collected by GLOBE Program participants using actual data collected by students in Pennsylvania and comparing them to their local climatic boundary conditions. This activity highlights the opportunities for using GLOBE data to introduce basic concepts of Earth system science.

This teaching activity is an introduction to how ice cores from the cryosphere are used as indicators and record-keepers of climate change as well as how climate change will affect the cryosphere.

This lesson sequence guides students to learn about the geography and the unique characteristics of the Arctic, including vegetation, and people who live there. Students use Google Earth to explore the Arctic and learn about meteorological observations in the Arctic, including collecting their own data in hands-on experiments. This is the first part of a three-part curriculum about Arctic climate.

Pages