In this activity, students use a physical model to learn the basics of photosynthesis and respiration within the carbon cycle.

This unit allows students to investigate past changes in Earth's climate. Students first explore relationships in climate data such as temperature, solar radiation, carbon dioxide, and biodiversity. They then investigate solar radiation in more depth to learn about changes over time such as seasonal shifts. Students then learn about mechanisms for exploring past changes in Earth's climate such as ice cores, tree rings, fossil records, etc. Finally, students tie all these together by considering the feedbacks throughout the Earth system and reviewing an article on a past mass extinction event.

A suite of hands-on activities to give students the opportunity to describe the shape and appearance of clouds and learn the types of weather that are associated with clouds. The module includes outdoor observation, group work, and creative/artistic activities.

This activity has students examine the misconception that there is no scientific consensus on climate change. Students explore temperature data and report their conclusions to the class. Then students examine techniques of science denial and examine a claim about scientific consensus.

This activity supports educators in the use of the activities that accompany the GLOBE Program's Earth System Poster 'Exploring Connections in Year 2007'. Students identify global patterns and connections in environmental data that include soil moisture, insolation, surface temperature, cloud fraction, precipitation, world topography/bathymetry, aerosol optical thickness, and biosphere (from different times of the year) with the goal of recognizing patterns and trends in global data sets.

Students analyze and interpret graphs to compare the flow of shortwave energy from the Sun toward China over the course of a year on cloudy versus clear days.

Climate has varied in the past, but today's climate change rate is much more drastic due to human activity. Students explore past climate cycle graphs and compare the cycles with the current rate of change.

Students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). This activity helps students become more familiar with the physical processes that made Earth's early climate so different from that of today. Students also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

Included in this lesson are opportunities to weave cloud study into Science, Language Arts, and Math. This lesson includes a demonstration of cloud formation, data collection and analysis of air temperatures and cloud coverage across time, and creation of an acrostic poem on the word CLOUDS.

This activity allows students to make El Nino in a container, but it might work better as a teacher demonstration. The introduction and information provided describe El Nino, its processes and its effects on weather elsewhere in the world.

Pages