In this set of activities, students learn about impacts of drought through news videos of communities facing serious water shortages, analyze drought data and models, and research and evaluate potential solutions. This lesson works well as a component within a larger unit on climate change, its impacts, and ways to address the resulting issues.

Using real data from NASA's GRACE satellites, students will track water mass changes in the U.S., data that measures changes in ice, surface and especially groundwater. The background information includes an animated video about where water exists and how it moves around Earth, as well as short video clips to introduce the GRACE mission and explain how satellites collect data. Students will estimate water resources using heat-map data, create a line graph for a specific location, then assess trends and discuss implications.

This activity illustrates the importance of water resources and how changes in climate are closely linked to changes in water resources. The activity could fit into many parts of a science curriculum, for example a unit on water could be connected to climate change.

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.

This model of ocean-atmosphere interaction shows how carbon dioxide gas diffuses into water, causing the water to become more acidic. The video demonstration and instruction provide an explanation of the chemistry behind this change and the consequences of ocean acidification. The video also addresses a misconception about how ocean acidification affects shelled organisms.

In this role-play activity, students take the roles of various important players in the climate change policy negotiation including politicians, scientists, environmentalists, and industry representatives. Working in these roles, students must take a position, debate with others, and then vote on legislation designed to reduce greenhouse gas emissions in the United States. Can be used in a variety of courses including writing and rhetoric, and social sciences.

This sequence of activities using real-world data to explain the importance of coral reefs and the relationship of coral reef health to the surrounding environment. Unit includes five activities.

In this Earth Exploration Toolbook chapter, students select, explore, and analyze satellite imagery. They do so in the context of a case study of the origins of atmospheric carbon monoxide and aerosols, tiny solid airborne particles such as smoke from forest fires and dust from desert wind storms. They use the software tool ImageJ to animate a year of monthly images of aerosol data and then compare the animation to one created for monthly images of carbon monoxide data. Students select, explore, and analyze satellite imagery using NASA Earth Observatory (NEO) satellite data and NEO Image Composite Explorer (ICE) tool to investigate seasonal and geographic patterns and variations in concentration of CO and aerosols in the atmosphere.

This lesson explores the chemistry of some of the greenhouse gases that affect Earth's climate. Third in a series of 9 lessons from an online module entitled 'Visualizing and Understanding the Science of Climate Change'.

Students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

This unit allows students to investigate past changes in Earth's climate. Students first explore relationships in climate data such as temperature, solar radiation, carbon dioxide, and biodiversity. They then investigate solar radiation in more depth to learn about changes over time such as seasonal shifts. Students then learn about mechanisms for exploring past changes in Earth's climate such as ice cores, tree rings, fossil records, etc. Finally, students tie all these together by considering the feedbacks throughout the Earth system and reviewing an article on a past mass extinction event.

Pages