In this jigsaw activity, students explore meteorological data collected from Eureka, Canada to try to decide when would be the best time for an Arctic visit.

This is the first of nine lessons in the Visualizing and Understanding the Science of Climate Change website. This lesson is an introduction to Earth's climate and covers key principles regarding Earth's unique climate, atmosphere, and regional and temporal climate differences.

In this activity, students use authentic Arctic climate data to unravel some causes and effects related to the seasonal melting of the snowpack and to further understand albedo.

For this lesson, the guiding Concept Question is: What is climate change and how does climate relate to greenhouse gas concentrations over time? This activity is the second lesson in a nine-lesson module 'Visualizing and Understanding the Science of Climate Change' produced by the International Year of Chemistry project (2011).

This teaching activity is an introduction to how ice cores from the cryosphere are used as indicators and record-keepers of climate change as well as how climate change will affect the cryosphere.

Students use long term sea-level rise data set to create models and compare short-term trends to long-term trends. They then determine whether sea-level rise is occurring based on the data.

In this activity, students are guided through graphs of surface air temperature anomaly data and Vostok ice core data to illustrate how scientists use these data to develop the basis for modeling how climate is likely to change in the future.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

In this activity, students use Google Earth and team up with fictional students in Chersky, Russia to investigate possible causes of thawing permafrost in Siberia and other Arctic regions. Students explore the nature of permafrost and what the effects of thawing permafrost mean both locally and globally. Next, students use a spreadsheet to explore soil temperature data from permafrost boreholes and surface air temperature datasets from in and around the Chersky region for a 50-year time span.

In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.